Copied to
clipboard

G = C42.495C23order 128 = 27

356th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.495C23, C4.892- 1+4, (C4×D8)⋊33C2, C85(C4○D4), C83Q89C2, C82D433C2, C86D423C2, C4⋊C4.384D4, D46D416C2, D4⋊Q841C2, D42Q823C2, (C2×D4).334D4, C22⋊C4.67D4, C4⋊C4.259C23, C4⋊C8.127C22, C4.49(C8⋊C22), (C2×C8).111C23, (C4×C8).196C22, (C2×C4).546C24, C23.351(C2×D4), C4⋊Q8.176C22, C2.99(D46D4), C2.94(D4○SD16), (C2×D8).166C22, (C4×D4).186C22, (C2×D4).262C23, M4(2)⋊C441C2, C2.D8.226C22, C4.Q8.112C22, D4⋊C4.85C22, C4⋊D4.111C22, C23.19D449C2, C23.46D424C2, C22⋊C8.105C22, (C22×C4).346C23, C22.806(C22×D4), C22.49C2410C2, C42⋊C2.217C22, (C2×M4(2)).139C22, C4.128(C2×C4○D4), (C2×C4).630(C2×D4), C2.85(C2×C8⋊C22), (C2×C4⋊C4).695C22, SmallGroup(128,2086)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.495C23
C1C2C4C2×C4C22×C4C2×C4⋊C4D46D4 — C42.495C23
C1C2C2×C4 — C42.495C23
C1C22C4×D4 — C42.495C23
C1C2C2C2×C4 — C42.495C23

Generators and relations for C42.495C23
 G = < a,b,c,d,e | a4=b4=1, c2=a2, d2=a2b2, e2=b2, ab=ba, cac-1=a-1, dad-1=ab2, eae-1=a-1b2, cbc-1=dbd-1=b-1, be=eb, dcd-1=bc, ece-1=a2b2c, ede-1=b2d >

Subgroups: 392 in 193 conjugacy classes, 88 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C2.D8, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C2×M4(2), C2×D8, C2×C4○D4, M4(2)⋊C4, C86D4, C4×D8, C82D4, D4⋊Q8, D42Q8, C23.46D4, C23.19D4, C83Q8, D46D4, C22.49C24, C42.495C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C8⋊C22, C22×D4, C2×C4○D4, 2- 1+4, D46D4, C2×C8⋊C22, D4○SD16, C42.495C23

Character table of C42.495C23

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D8E8F
 size 11114488222244444448888444488
ρ111111111111111111111111111111    trivial
ρ21111-11-11-111-1-11-1-111-1-111-1-1-1111-1    linear of order 2
ρ3111111-1111111111-1-11-11-11-1-1-1-1-1-1    linear of order 2
ρ41111-1111-111-1-11-1-1-1-1-111-1-111-1-1-11    linear of order 2
ρ5111111-1-11111-1111-1-1-1-1-1-1-1111111    linear of order 2
ρ61111-111-1-111-111-1-1-1-111-1-11-1-1111-1    linear of order 2
ρ71111111-11111-111111-11-11-1-1-1-1-1-1-1    linear of order 2
ρ81111-11-1-1-111-111-1-1111-1-11111-1-1-11    linear of order 2
ρ91111-1-1-1111111-11-1-1-111-11-1-1-1-1-111    linear of order 2
ρ1011111-111-111-1-1-1-11-1-1-1-1-11111-1-11-1    linear of order 2
ρ111111-1-11111111-11-1111-1-1-1-11111-1-1    linear of order 2
ρ1211111-1-11-111-1-1-1-1111-11-1-11-1-111-11    linear of order 2
ρ131111-1-11-11111-1-11-111-1-11-11-1-1-1-111    linear of order 2
ρ1411111-1-1-1-111-11-1-1111111-1-111-1-11-1    linear of order 2
ρ151111-1-1-1-11111-1-11-1-1-1-111111111-1-1    linear of order 2
ρ1611111-11-1-111-11-1-11-1-11-111-1-1-111-11    linear of order 2
ρ1722222-200-2-2-2-2022-20000000000000    orthogonal lifted from D4
ρ18222222002-2-220-2-2-20000000000000    orthogonal lifted from D4
ρ192222-2200-2-2-2-20-2220000000000000    orthogonal lifted from D4
ρ202222-2-2002-2-2202-220000000000000    orthogonal lifted from D4
ρ212-22-200000-2202i000-2i2i-2i0000-220000    complex lifted from C4○D4
ρ222-22-200000-220-2i000-2i2i2i00002-20000    complex lifted from C4○D4
ρ232-22-200000-2202i0002i-2i-2i00002-20000    complex lifted from C4○D4
ρ242-22-200000-220-2i0002i-2i2i0000-220000    complex lifted from C4○D4
ρ254-4-440000400-400000000000000000    orthogonal lifted from C8⋊C22
ρ264-4-440000-400400000000000000000    orthogonal lifted from C8⋊C22
ρ274-44-4000004-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2844-4-40000000000000000000002-2-2-200    complex lifted from D4○SD16
ρ2944-4-4000000000000000000000-2-22-200    complex lifted from D4○SD16

Smallest permutation representation of C42.495C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 52 26 31)(2 49 27 32)(3 50 28 29)(4 51 25 30)(5 47 61 53)(6 48 62 54)(7 45 63 55)(8 46 64 56)(9 34 14 39)(10 35 15 40)(11 36 16 37)(12 33 13 38)(17 57 24 41)(18 58 21 42)(19 59 22 43)(20 60 23 44)
(1 45 3 47)(2 48 4 46)(5 52 7 50)(6 51 8 49)(9 43 11 41)(10 42 12 44)(13 60 15 58)(14 59 16 57)(17 39 19 37)(18 38 20 40)(21 33 23 35)(22 36 24 34)(25 56 27 54)(26 55 28 53)(29 61 31 63)(30 64 32 62)
(1 25 28 2)(3 27 26 4)(5 54 63 46)(6 45 64 53)(7 56 61 48)(8 47 62 55)(9 15 16 12)(10 11 13 14)(17 44 22 58)(18 57 23 43)(19 42 24 60)(20 59 21 41)(29 32 52 51)(30 50 49 31)(33 39 40 36)(34 35 37 38)
(1 16 26 11)(2 10 27 15)(3 14 28 9)(4 12 25 13)(5 24 61 17)(6 20 62 23)(7 22 63 19)(8 18 64 21)(29 34 50 39)(30 38 51 33)(31 36 52 37)(32 40 49 35)(41 53 57 47)(42 46 58 56)(43 55 59 45)(44 48 60 54)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,52,26,31)(2,49,27,32)(3,50,28,29)(4,51,25,30)(5,47,61,53)(6,48,62,54)(7,45,63,55)(8,46,64,56)(9,34,14,39)(10,35,15,40)(11,36,16,37)(12,33,13,38)(17,57,24,41)(18,58,21,42)(19,59,22,43)(20,60,23,44), (1,45,3,47)(2,48,4,46)(5,52,7,50)(6,51,8,49)(9,43,11,41)(10,42,12,44)(13,60,15,58)(14,59,16,57)(17,39,19,37)(18,38,20,40)(21,33,23,35)(22,36,24,34)(25,56,27,54)(26,55,28,53)(29,61,31,63)(30,64,32,62), (1,25,28,2)(3,27,26,4)(5,54,63,46)(6,45,64,53)(7,56,61,48)(8,47,62,55)(9,15,16,12)(10,11,13,14)(17,44,22,58)(18,57,23,43)(19,42,24,60)(20,59,21,41)(29,32,52,51)(30,50,49,31)(33,39,40,36)(34,35,37,38), (1,16,26,11)(2,10,27,15)(3,14,28,9)(4,12,25,13)(5,24,61,17)(6,20,62,23)(7,22,63,19)(8,18,64,21)(29,34,50,39)(30,38,51,33)(31,36,52,37)(32,40,49,35)(41,53,57,47)(42,46,58,56)(43,55,59,45)(44,48,60,54)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,52,26,31)(2,49,27,32)(3,50,28,29)(4,51,25,30)(5,47,61,53)(6,48,62,54)(7,45,63,55)(8,46,64,56)(9,34,14,39)(10,35,15,40)(11,36,16,37)(12,33,13,38)(17,57,24,41)(18,58,21,42)(19,59,22,43)(20,60,23,44), (1,45,3,47)(2,48,4,46)(5,52,7,50)(6,51,8,49)(9,43,11,41)(10,42,12,44)(13,60,15,58)(14,59,16,57)(17,39,19,37)(18,38,20,40)(21,33,23,35)(22,36,24,34)(25,56,27,54)(26,55,28,53)(29,61,31,63)(30,64,32,62), (1,25,28,2)(3,27,26,4)(5,54,63,46)(6,45,64,53)(7,56,61,48)(8,47,62,55)(9,15,16,12)(10,11,13,14)(17,44,22,58)(18,57,23,43)(19,42,24,60)(20,59,21,41)(29,32,52,51)(30,50,49,31)(33,39,40,36)(34,35,37,38), (1,16,26,11)(2,10,27,15)(3,14,28,9)(4,12,25,13)(5,24,61,17)(6,20,62,23)(7,22,63,19)(8,18,64,21)(29,34,50,39)(30,38,51,33)(31,36,52,37)(32,40,49,35)(41,53,57,47)(42,46,58,56)(43,55,59,45)(44,48,60,54) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,52,26,31),(2,49,27,32),(3,50,28,29),(4,51,25,30),(5,47,61,53),(6,48,62,54),(7,45,63,55),(8,46,64,56),(9,34,14,39),(10,35,15,40),(11,36,16,37),(12,33,13,38),(17,57,24,41),(18,58,21,42),(19,59,22,43),(20,60,23,44)], [(1,45,3,47),(2,48,4,46),(5,52,7,50),(6,51,8,49),(9,43,11,41),(10,42,12,44),(13,60,15,58),(14,59,16,57),(17,39,19,37),(18,38,20,40),(21,33,23,35),(22,36,24,34),(25,56,27,54),(26,55,28,53),(29,61,31,63),(30,64,32,62)], [(1,25,28,2),(3,27,26,4),(5,54,63,46),(6,45,64,53),(7,56,61,48),(8,47,62,55),(9,15,16,12),(10,11,13,14),(17,44,22,58),(18,57,23,43),(19,42,24,60),(20,59,21,41),(29,32,52,51),(30,50,49,31),(33,39,40,36),(34,35,37,38)], [(1,16,26,11),(2,10,27,15),(3,14,28,9),(4,12,25,13),(5,24,61,17),(6,20,62,23),(7,22,63,19),(8,18,64,21),(29,34,50,39),(30,38,51,33),(31,36,52,37),(32,40,49,35),(41,53,57,47),(42,46,58,56),(43,55,59,45),(44,48,60,54)]])

Matrix representation of C42.495C23 in GL6(𝔽17)

400000
0130000
000100
0016000
00116115
0010116
,
100000
010000
000100
0016000
00116115
0010116
,
040000
400000
00169710
009807
001998
008181
,
400000
040000
0001600
0016000
00161162
000001
,
0130000
400000
00116115
0000160
000100
0010116

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,16,1,1,0,0,1,0,16,0,0,0,0,0,1,1,0,0,0,0,15,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,1,1,0,0,1,0,16,0,0,0,0,0,1,1,0,0,0,0,15,16],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,16,9,1,8,0,0,9,8,9,1,0,0,7,0,9,8,0,0,10,7,8,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,16,0,0,0,16,0,1,0,0,0,0,0,16,0,0,0,0,0,2,1],[0,4,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,1,0,0,16,0,1,0,0,0,1,16,0,1,0,0,15,0,0,16] >;

C42.495C23 in GAP, Magma, Sage, TeX

C_4^2._{495}C_2^3
% in TeX

G:=Group("C4^2.495C2^3");
// GroupNames label

G:=SmallGroup(128,2086);
// by ID

G=gap.SmallGroup(128,2086);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,456,758,723,100,2019,346,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=a^2,d^2=a^2*b^2,e^2=b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^2,e*a*e^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e^-1=a^2*b^2*c,e*d*e^-1=b^2*d>;
// generators/relations

Export

Character table of C42.495C23 in TeX

׿
×
𝔽